预存
    Document
    当前位置:文库百科文章详情
    Plasma这么好,你却只会用它来清洗!
    来源:科学10分钟 时间:2022-05-23 12:08:04 浏览:4791次

    等离子体是一种由自由电子和带电离子为主要成分的物质形态,常被视为是物质的第四态。它是部分电离的气体, 由电子、离子、自由基、中性粒子及光子组成。1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体”(plasma)一词引入物理学,用来描述气体放电管里的物质形态。

    等离子体本身是含有物理和化学活泼粒子的电中性混合物。这些活泼自由基粒子能够做化学功, 而带电原子和分子通过溅射能够做物理功。因此, 通过物理轰击和化学反应, 等离子工艺能够完成各种材料表面改性, 常常用来对材料进行表面活化、污染物去除、刻蚀等功效。

    但是,你知道吗,由于等离子体的高活性,它现在还常常用来制备新材料!在本篇文章中,我们将向大家介绍等离子体的基本知识,同时向大家介绍基于不同等离子源(O,N,Ar,C等)的等离子技术的最新应用(表面修饰、沉积、转化反应等)[1]

         

    Plasma基本知识

    Plasma作为一种包含带电粒子和不带电粒子的准中性气体,其表现出了一种集群行为。它有两个主要的特点:(1)准中性,这意味着等离子体中电子的密度约等于离子的密度;(2)集群行为,等离子体中物质的运动不仅受微环境(如碰撞)的影响还与微状态(电场和磁场)有关。

    得到等离子体的方法通常有两种:(1)热激活,物质通过吸收大量的热变成等离子体;(2)电激活,物质通过在电场中发生连续的碰撞和震荡而形成等离子体。


     

    图1 热产生的等离子体(热等离子体)和电场产生的等离子体(冷等离子体)


    电子温度(Te)和离子温度(Ti)是Plasma的两个重要参数。电子温度反应的是电子的热运动,离子温度反应的是重颗粒、离子和中性物质的热运动。对于热等离子体,Te ≈ Ti;对于非热等离子体,Te >> Ti

    对于热等离子体,电子和离子温度都很高,因此它不仅具有高的反应性,还具有强烈的热效应,足以融化/气化大部分材料,如钨。鉴于此,热等离子体常用来融化金属、煅烧陶瓷、蒸发材料。不过,这种热效应不利于制备纳米结构的材料。

    作为对比,冷等离子体没有热效应,不过仍然具有高的化学活性。因此,它适于对材料进行处理,尤其是对那些热敏感的材料。过去一段时间,众多学者在冷等离子体制备纳米材料方面进行的广泛的研究,取得了很多有意思的结果。本文将在后面进行详细举例介绍。

    图2展示了产生冷等离子的三种常见的设备类型,它们分别是:(1)介电阻挡放电等离子体;(2)微波等离子体;(3)射频等离子体。


     图2 常见的三种冷等离子体设备


    Plasma的应用

    与传统的化学反应媒介相比,冷等离子体在制备/改性材料方面表现出了独特的优势。这主要源于其两大特性:高化学活性和低热效应。根据反应结果等离子体反应主要可以分为三类:(1)刻蚀;(2)沉积;(3)改性。


    2.1 基于Ar-Plasma的刻蚀

    基于Ar-Plasma的清洗/刻蚀功能可能是绝大部分人了解最多的。由于Ar的化学惰性,Ar-Plasma(Ar+,Ar*,e-)主要表现为强的刻蚀效应,无法在目标材料中形成掺杂。刻蚀反应可以认为是一个物理过程,在处理时,等离子体将所处理材料的原子/分子移除或重新排列。尽管刻蚀是一个物理过程,Ar-Plasma处理仍然会通过引入缺陷或空位而改变材料的表面化学状态。

    在Ar-Plasma处理后,材料表面会形成很多悬键,在暴露于空气中时,这些悬键会与氧反应形成含氧官能团。因此,碳材料在经过Ar-Plasma处理后会明显改善亲水性。

    杂原子掺杂的石墨烯作为一类无金属电催化剂受到了很多的关注。然而,它的电化学性能并不令人满意。基于此,Tian ye等学者提出可以利用Ar-Plasma对杂原子掺杂的石墨烯进行处理,从而得到更多的拓扑缺陷以期改善材料的电催化性能(图3)[2]

    从图4a的XRD谱图可以看到,Ar-Plasma处理后,硫掺杂的石墨(SG)烯结晶度降低了。图4b的Raman光谱也证实,Ar-Plasma处理的SG(SG-P)具有更高的ID/IG,表明具有更丰富的缺陷位点。更多的拓扑缺陷意味着更多的活性位点,因此,Ar-Plasma处理的SG表现出了更优异的催化性能(图4c, d)。


     

    图3 Ar-Plasma处理的硫掺杂的石墨烯(SG-P)

     

    图4 Ar-Plasma处理前后硫掺杂的石墨烯的XRD、拉曼光谱和电催化性能


    2.2 基于C-Plasma的沉积反应

    C-Plasma通常产生于气态或液态碳源中,如甲烷和乙醇等。它的一个主要应用是制备碳基材料,如碳纳米管(CNTs)、水平生长的石墨烯(HG)和垂直生长的石墨烯(VG)等。由于其独特的还原特性,C-Plasma还可以用来对金属基纳米材料进行改性(还原/碳化)。

    碳化钨是一种非常有潜力的析氢电催化剂,如何制备具有高活性位点的碳化钨一直是研究的热点。基于此,中山大学的Wang chenxin团队开发了一种Plasma辅助的渗碳方法合成了具有多孔结构的碳化钨纳米线[3]

    作者首先制备了碳布负载的氧化钨纳米线(WOx NWs/CC),随后将其进行C-Plasma处理将其转换成了碳化钨纳米线(图5)。由于C-Plasma同时具有刻蚀效应,制备的碳化钨纳米线还呈现出独特的多孔结构。电化学测试表明,通过C-Plasma处理制备的碳化钨材料表现出了非常优异的电催化性能(图6),起始电位仅有39 mV,过电势η10也只有118 mV,塔菲尔斜率为56 mV dec-1


     

    图5 碳布负载的WOx纳米线(WOx NWs/CC)在C-Plasma后变成WCx(WCx NWs/CC)

     

    图6 四种不同材料的电催化性能


    2.3 基于H、O、N、S、P-Plasma的改性反应

    H-Plasma通常是基于H2源来产生的。它可以与C-Plasma结合在一起使用来沉积石墨碳。H-Plasma另外一个常见的应用就是还原氧化物。相比于采用H2的热还原,H-Plasma具有如下优势:(1)室温下具有高还原性;(2)还原速度快;(3)低破坏性。

    氧气等离子体(O-Plasma)的应用也很广泛,通常用于对碳基材料和金属基材料进行处理。O-Plasma可以在材料表面引入极性基团,从而改善材料的表面润湿性。需要注意的是,持续进行O-Plasma也会产生COx气体,从而对碳材料产生刻蚀作用。因此,O-Plasma也可以去除材料表面的碳污染物。O-Plasma还可以对金属基复合物起到掺杂作用,如形成氧掺杂的金属硫化物。此外,O-Plasma还可以用来氧化金属基材料。

    对于N-Plasma而言,常用的含氮气源通常是NH3和N2。由于氮气中N≡N的键能远大于氨气中的N-H键,因此N2 Plasma需要更高的能量。不过,NH3 Plasma存在一定的毒性,而且成本更高,因此N2 Plasma的应用更为广泛。N-Plasma的应用主要有两点:(1)氮掺杂;(2)氮化。

    南阳理工大学的Ouyang bo等学者就利用N2 Plasma对商用Ni泡沫进行了处理,从而得到了珊瑚状的Ni3N[4]。商用的Ni泡沫拥有着光滑的表面,在Plasma环境下其表面会发生氮化,由于Ni和Ni3N晶格的不匹配,材料表面会产生空位并演变成纳米孔从而最终形成珊瑚状的Ni3N(图7)。作者将这个材料用来储锂,发现它表现出了相当好的倍率性能和循环稳定性(图8)。


     

    图7 石墨烯量子点包覆的Ni3N(GQD@hNi3N)制备流程


     

    图8 Ni3N和GQD@hNi3N的材料表征和电化学性能


    在S-Plasma中,H2S是最典型的气源,常常用于硫掺杂和硫化反应。在Plasma环境中,H2S会变成S*自由基和S+、S-离子,因而即使在室温下也具有很高的活性。需要注意的是,H相关的物种也会相应的产生,因此H2S-Plasma也具有还原性。

    与其它硫源相比,H2S的可控性最好,但不可否认的是,它具有明显的环境毒性,因此H2S-Plasma的研究并不多。对于S-Plasma而言,亟需开发出更加友好的S源。

    S-Plasma类似,PH3是P-Plasma最常用的气源。P-Plasma的出现很晚,近些年才逐渐开始。它主要用来进行P掺杂和磷化处理。需要特别注意的是,PH3是一个非常危险且对环境有害的气体,因此也亟需开发环境友好且安全的气源。


    总结

    可以说,除了最常见的清洁和刻蚀功能,Plasma凭借着快速、高效和环境友好的特点在材料合成与改性方面也具有独特的应用。尤其是结合各种不同的气源所产生的不同类型的等离子体,它们使Plasma展现出了各种神奇的功用。不过,Plasma在材料制备与改性方面的应用仍然处在初期阶段,更多可能等着大家一起来开发。


    参考文献:

    [1] B. Ouyang, Y. Zhang, X. Xia, R.S. Rawa, H.J. Fan, Materials Today Nano, 2018, 3, 28-47.

    [2] Bowen Ren, Dongqi Li, Qiuyan Jin, Hao Cui, Chengxin Wang, J. Mater. Chem. A, 2017, 5, 13196.

    [3] Ye Tian, Zhen Wei, Xuejun Wang, Shuo Peng, Xiao Zhang b, Wu-ming Liu, International Journal of Hydrogen Energy, 2017, 42, 4184-4192.

    [4] Bo Ouyang, Yongqi Zhang, Zheng Zhang, Hong Jin Fan, and Rajdeep Singh Rawat, Small, 2017, 13, 1604265.



    评论 / 文明上网理性发言
    12条评论
    全部评论 / 我的评论
    最热 /  最新
    全部 3小时前 四川
    文字是人类用符号记录表达信息以传之久远的方式和工具。现代文字大多是记录语言的工具。人类往往先有口头的语言后产生书面文字,很多小语种,有语言但没有文字。文字的不同体现了国家和民族的书面表达的方式和思维不同。文字使人类进入有历史记录的文明社会。
    点赞12
    回复
    全部
    查看更多评论
    相关文章

    基础理论丨一文了解XPS(概念、定性定量分析、分析方法、谱线结构)

    2020-05-03

    手把手教你用ChemDraw 画化学结构式:基础篇

    2021-06-19

    晶体结构可视化软件 VESTA使用教程(下篇)

    2021-01-22

    【科研干货】电化学表征:循环伏安法详解(上)

    2019-10-25

    【科研干货】电化学表征:循环伏安法详解(下)

    2019-10-25

    Zeta电位的基本理论、测试方法和应用

    2020-08-24

    热门文章/popular

    基础理论丨一文了解XPS(概念、定性定量分析、分析方法、谱线结构)

    手把手教你用ChemDraw 画化学结构式:基础篇

    晶体结构可视化软件 VESTA使用教程(下篇)

    【科研干货】电化学表征:循环伏安法详解(上)

    电化学实验基础之电化学工作站篇 (二)三电极和两电极体系的搭建 和测试

    【科研干货】电化学表征:循环伏安法详解(下)

    微信扫码分享文章