网站地图 关于 合作 招聘 帮助 会员中心

    热线:400-152-6858

    测试狗科研服务

    预存 定制
    Document
    当前位置:文库百科文章详情
    旋转电极的基本原理及应用
    来源: 时间:2022-12-05 10:42:02 浏览:3589次


    1.旋转电极概述

    旋转圆盘电极(RDE)或旋转圆盘圆环电极(RRDE)通常与电化学工作站联用,广泛用于化学电源、电镀、金属腐蚀等应用领域和电化学技术研究。典型应用包括:氢燃料电池催化剂研究及评价;锂空气电池研究;电化学动力学研究;氧还原反应(ORR)、氧析出反应(OER)、氢析出反应(HER)、二氧化碳电还原反应(CO2RR)研究;缓蚀剂评价及研究;金属材料腐蚀电位研究等。

    图1(a)环盘电极,(b)圆盘电极

    旋转电极的特点:

    (1)电极旋转可以使溶液形成强制对流,提高传质速度;

    (2)传质速度(扩散层厚度)可以通过电极转速来控制;

    (3)电流密度分布均匀;

    (4)用于较快反应速度的测试。

    2.旋转电极的原理

    在1942年,Levich根据流动动力学原理首次提出RDE(rotating disk electrode)理论,引起电化学界广泛注意。1949年,Siver 和Kabaonv从实验上证实了这个理论,并在几年之后获得了实际应用。

    它克服了静止电极和经典的振动线电极存在的某些缺点,使电化学发展达到一个新的水平。通常平面电极上的电流是不均匀的而且水溶液中的传质速度也比较小。为了研究电极表面电流密度的分布情况、减少或消除扩散层等因素的影响,电化学研究人员通过对比各种电极和搅拌的方式,开发出了一种高速旋转的电极,由于这种电极的端面像一个盘,所以也叫旋转圆盘电极。

    表1 旋转圆盘电极与传统固体静电极的对比
    图2 RDE电极结构示意图及电极附近液体流动轨迹示意图

    1. 由于流体的粘滞阻力,非常靠近电极表面的一层液体,没有参与强制对流,而是类似于被“粘”在电极上,随电极转动;

    2. 粘滞层的传质还是通过扩散传质;

    3. 粘滞层的厚度随着转速而改变,转速越高,厚度越薄。

    3.旋转电极动力学

    2、电极反应受混合步骤控制时,电化学为不可逆或部分可逆。由于化学平衡被破坏,因此Nernst公式不适合处理这类问题。在恒电势条件下,电极表面上反应粒子浓度将受到电极转速变化的影响,但利用旋转电极上的Id、Ic,可方便地校正浓度极化的影响。在不可逆条件下应有Ic=nFk COS, Ik=nFk COO(称为动力学电流密度)。

    极限扩散电流id

    图3 极限电流与RDE不同转速下的动力学关系图

    4.旋转电极在ORR中的应用

    4.1 ORR动力学求算

    Cheng等[1]设计合成了一种N、P共掺杂的缺陷碳纳米片(N,P-DC),并用于锚定酞菁铁形成FePc@N,P-DC复合催化剂。如图4所示,碳的缺陷位增强了Fe中心的高自旋状态,使该催化剂在碱性介质表现出优异的ORR性能——半波电位高达0.903 V,起始电位和极限电流密度均高于商业Pt/C,同时具有良好的稳定性。

    图4 (a) 几种催化剂在O2饱和0.1 M KOH中的线性伏安扫描曲线,转速1600 rpm; (b)对应的 Tafel斜率

    推导过程:

    a.根据K-L方程(校正传质)求算动力学电流(iK);

    b.把iK对催化剂载量/活化面积归一化,求得质量比活性(jm)或面积比活性(jk);这两项参数可用来比较不同催化剂的活性;

    c.把jm或jk取对数,再对电位做Tafel图,通过Tafel斜率和截距进一步计算传递系数,交换电流密度。

    4.2 活性评价

    Han等[2] 设计在ZIF-8生长过程中嵌入Fe-Phen,惰性气氛高温热解后可获得Fe-Nx-C单原子催化剂,如图5所示在氧还原反应中的半波电位为0.91 V,远高于商业Pt/C(0.82 V)。 Fe-Nx-C用于锌空电池的阴极,同样表现出优异的电化学性能。

    图5 Fe-Nx-C和Pt/C催化剂在O2饱和0.1 M KOH中的ORR极化曲线,转速为1600 rpm,扫描速率为5 mV s−1。

    关于电流密度需要注意的是:

    a.极化曲线用电极几何面积归一化,不同催化剂应该可以达到相同的极限电流;

    b.计算jk要先算ik,再用电极活化面积来归一化;

    c.催化活性的比较,要取纯电化学控制区,或者混合控制区的数据,不能使用极限电流;

    d.由于传质影响大,所区电位区间对应的电流与极限电流接近时,极小的测量误差也会引起较大的结果差异。因此使用K-L方程进行计算时,最好电位能高于E1/2。

    4.3 氧还原的选择性(H2O2产率)

    图6 RRDE示意图[3]

    Gong等[4]通过电纺丝结合再经钴掺杂获得LaMn0.7Co0.3O3-x催化剂,优化后的LMC-800具有分层多孔纳米管结构,表现出良好的ORR/OER性能。如图7所示,RRDE计算表明该催化剂在ORR过程中平均转移电子数为3.8,接近四电子反应。这是由于高比表面积和一维纳米结构利于O2快速扩散,促进电解液的渗透,改善电子转移过程。

    图7 RRDE上LMCO-800催化剂的线性扫描伏安曲线,1600rpm

    Pt单原子催化剂能够使O2电催化还原发生两电子过程而生成H2O2,尤其是具有高浓度的Pt单原子催化剂有望在该反应中表现出超高的催化活性和选择性,从而使电催化合成H2O2的实际应用成为可能。清华大学李亚栋院士团队[5]制备的催化剂在H2O2电合成反应中具有优异的选择性与活性,如图8所示,在O2饱和的0.1M HClO4溶液中,h-Pt1-CuSx催化剂能在0.05-0.7V(vs.RHE)范围内以高达92%-96%的选择率将O2还原为H2O2,构筑的电解池能达到546±30 mol kgcat-1h-1的H2O2产率。

    图8 (a) 几种催化剂在RRDE上的线性扫描伏安曲线,(b)对应的 H2O2选择性

    4.4 旋转电极在电化学中的其他应用

    近年来,酸性镀铜液中加速剂、抑制剂、整平剂等添加剂的协同作用机制已经被大量研究。而且镀液流动方式对电镀速率与镀层均匀性影响较大,尤其是不同对流方式下,整平剂的吸附状态会影响镀层性能。旋转圆盘电极同样可用以模拟镀液不同对流条件下金属电沉积的电化学行为,进而分析电沉积过程中添加剂的作用机理。

    冀等人[6]分析了 RDE 不同转速下电解池内的镀液流场分布、电极表面铜离子浓度分布、扩散层分布与电流密度分布的特征,如图9所示。结果表明, RDE 转速会影响电解池内镀液的流动,在电极附近形成稳定的流体边界层和扩散层。RDE 在高速旋转时,电极表面除边缘外电流密度分布均匀,电沉积时在电极表面可得到均匀的电镀层。用于分析生产线电镀铜过程,有助于电镀铜工艺优化,提高生产效率,降低成本。

    图9 (a) 3000 r/min 时 RDE 电极附近镀液流动速率的变化, (b)在不同转速下 RDE电极附近铜离子的浓度分布

    5.ORR测试中的注意事项

    1. 电极制备通常是将催化剂、Nafion分散于水/乙醇/异丙醇中,经超声形成高分散地ink;表面催化剂要铺满且均匀,否则很难达到极限电流,或者导致接近极限电流时拖尾;干燥速度不宜过高,否则颗粒易团聚;测量过程中最好保持持续通氧气。

    图10 三种涂覆催化剂的铂碳电极光学显微图片: (a)较差的,(b)中等的,(c)良好的。薄膜质量对ORR活性的影响很大。
    图11 ORR极化曲线,扫描范围0.05 V→1.03 V vs RHE。使用20 mV s−1扫描时,催化剂形成良好薄膜的GC上也显示出优异的极化曲线。电极转速=1600 rpm; O2饱和0.1 M HClO4; 30 ℃; Pt负载= 20 mgPt cm−2。

    2. Pt基催化剂在ORR中对溶液杂质、SO42-、Cl-等阴离子特性吸附非常敏感,因此不推荐使用硫酸,可以使用高氯酸。试剂纯度要高,要经常更换新鲜电解液,最好现配现用;最好使用不含Cl-的参比电极,测试时最好每根电极都更换溶液。

    3. 由于催化剂在高电位时形成氧物种,使活性降低,因此催化剂的正向和负向扫描不能完全重合。对于Pt催化剂,通常采用正向扫描,更能反映催化剂的本征活性。

    4. 扫描速率通常选择5-20 mV s-1。扫速过低,生成的氧物种覆盖程度增加,使活性降低;扫速过高,背景电流造成的影响较大。

    5. Yannick Garsany[7]在Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction一文中针对如何准确、可重复性地测试铂基催化剂ORR活性作出了评述,可供参考。

    图12 Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction
    参考文献

    [1] Wenzheng Cheng, Pengfei Yuan, Zirui Lv, Yingying Guo, Yueyang Qiao, Xiaoyi Xue, Xin Liu, Wenlong Bai, Kaixue Wang, Qun Xu, Jianan Zhang, Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries, Applied Catalysis B: Environmental 260 (2020) 118198

    [2] Junxing Han, Xiaoyi Meng, Liang Lu, Juanjuan Bian, Zhipeng Li,* and Chunwen Sun*,Single-Atom Fe-Nx-C as an Effcient Electrocatalyst for Zinc–Air Batteries,Adv. Funct. Mater. 2019, 1808872

    [3] Allan Bard《电化学方法:原理与应用(第二版)》P243,化学工业出版社

    [4] Hao Gong, Tao Wang, Hu Guo, Xiaoli Fan, Xiao Liu, Li Song, Wei Xia, Bin Gao, Xianli Huang and Jianping He,Fabrication of perovskite-based porous nanotubes as efficient bifunctional catalyst and application in hybrid lithium–oxygen batteries J. Mater. Chem. A, 2018, 6, 16943–16949

    [5] Rongan Shen, Wenxing Chen, Qing Peng, Siqi Lu, Lirong Zheng, Xing Cao, Yu Wang, Wei Zhu, Juntao Zhang, Zhongbin Zhuang, Chen Chen, Dingsheng Wang, Yadong Li, High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution,Chem, Volume 5, Issue 8, 2099 - 2110

    [6] 冀林仙 ,聂合贤 ,苏世栋 ,陈苑明 ,何为,电镀与涂饰,36,9,437

    [7] Yannick Garsany, Olga A. Baturina, Karen E. Swider-Lyons, and Shyam S. Kocha,Anal. Chem. 2010, 82, 15, 6321–6328


    评论 / 文明上网理性发言
    12条评论
    全部评论 / 我的评论
    最热 /  最新
    全部 3小时前 四川
    文字是人类用符号记录表达信息以传之久远的方式和工具。现代文字大多是记录语言的工具。人类往往先有口头的语言后产生书面文字,很多小语种,有语言但没有文字。文字的不同体现了国家和民族的书面表达的方式和思维不同。文字使人类进入有历史记录的文明社会。
    点赞12
    回复
    全部
    查看更多评论
    相关文章

    【科研干货】电化学表征:循环伏安法详解(上)

    2019-10-25

    晶体结构可视化软件 VESTA使用教程(下篇)

    2021-01-22

    手把手教你用ChemDraw 画化学结构式:基础篇

    2021-06-19

    【科研干货】电化学表征:循环伏安法详解(下)

    2019-10-25

    基础理论丨一文了解XPS(概念、定性定量分析、分析方法、谱线结构)

    2020-05-03

    晶体结构可视化软件 VESTA使用教程(上篇)

    2021-01-22

    项目推荐/Project
    塞贝克系数与电阻率测试系统

    塞贝克系数与电阻率测试系统

    热门文章/popular

    【科研干货】电化学表征:循环伏安法详解(上)

    晶体结构可视化软件 VESTA使用教程(下篇)

    电化学实验基础之电化学工作站篇 (二)三电极和两电极体系的搭建 和测试

    手把手教你用ChemDraw 画化学结构式:基础篇

    【科研干货】电化学表征:循环伏安法详解(下)

    基础理论丨一文了解XPS(概念、定性定量分析、分析方法、谱线结构)

    微信扫码分享文章

    意见反馈

    有奖举报

    商务合作

    公众号

    关注我们 了解更多

    小程序

    随时预约 掌握进度

    举报有奖

    TEL: 191-3608-6524

    如:在网络上恶意使用“测试狗”等相关关键词误导用户点击、恶意盗用测试狗商标、冒称官方工作人员等情形,请您向我们举报,经查实后,我们将给予您奖励。

    举报内容:

    200

    上传附件:
    文件格式不正确,请重新上传文件格式不正确,请重新上传文件格式不正确,请重新上传
    文件格式:jpg、jpeg、png、gif、tif、doc、docx、ppt、pptx、xls、xlsx、pdf、zip、rar
    联系方式
    姓名
    电话
    提交意见

    意见反馈

    Suggestions

    您可以在此留下您宝贵的意见,您的意见或问题反馈将会成为我们不断改进的动力。

    意见类型
    测试服务
    网站功能
    财务报账
    其他类型
    意见内容

    200

    联系方式
    姓名
    电话
    提交意见

    收起

    Document
    关于我们 新手帮助 测试干货 商务合作 基金查询 相关资质 模拟计算 现场测试 服务项目 科研绘图 同步辐射 电池行业

    联系方式/contact

    400-152-6858

    工作时间/work time

    09:00-18:00

    测试狗公众号

    关注我们 了解更多

    测试狗小程序

    随时预约 掌握进度

    蜀公网安备51010602000648号

    蜀ICP备17005822号-1

    成都世纪美扬科技有限公司

    Copyright@测试狗·科研服务